I52c_2 Vertex Coordinates Class A radius: 1.0 even permutations of ( ±sqrt( (5 + sqrt(5)) / 10 ), ±sqrt( (5 - sqrt(5)) / 10 ), 0 ) A01: 0.85065080835203993218 0.52573111211913360603 0.00000000000000000000 A02: 0.85065080835203993218 -0.52573111211913360603 0.00000000000000000000 A03: -0.85065080835203993218 0.52573111211913360603 0.00000000000000000000 A04: -0.85065080835203993218 -0.52573111211913360603 0.00000000000000000000 A05: 0.00000000000000000000 0.85065080835203993218 0.52573111211913360603 A06: 0.00000000000000000000 0.85065080835203993218 -0.52573111211913360603 A07: 0.00000000000000000000 -0.85065080835203993218 0.52573111211913360603 A08: 0.00000000000000000000 -0.85065080835203993218 -0.52573111211913360603 A09: 0.52573111211913360603 0.00000000000000000000 0.85065080835203993218 A10: -0.52573111211913360603 0.00000000000000000000 0.85065080835203993218 A11: 0.52573111211913360603 0.00000000000000000000 -0.85065080835203993218 A12: -0.52573111211913360603 0.00000000000000000000 -0.85065080835203993218 Class B radius R: sqrt( ( 5 + sqrt(5)) / 10 ), approx. 0.850650808352 permutations of ( ±1, 0, 0 ) * R even permutations of ( ±(sqrt(5) + 1) / 4, ±(sqrt(5) - 1) / 4, ±1 / 2 ) * R B01: 0.85065080835203993218 0.00000000000000000000 0.00000000000000000000 B02: -0.85065080835203993218 0.00000000000000000000 0.00000000000000000000 B03: 0.00000000000000000000 0.85065080835203993218 0.00000000000000000000 B04: 0.00000000000000000000 -0.85065080835203993218 0.00000000000000000000 B05: 0.00000000000000000000 0.00000000000000000000 0.85065080835203993218 B06: 0.00000000000000000000 0.00000000000000000000 -0.85065080835203993218 B07: 0.68819096023558676910 0.26286555605956680301 0.42532540417601996609 B08: 0.68819096023558676910 -0.26286555605956680301 0.42532540417601996609 B09: 0.68819096023558676910 0.26286555605956680301 -0.42532540417601996609 B10: 0.68819096023558676910 -0.26286555605956680301 -0.42532540417601996609 B11: -0.68819096023558676910 0.26286555605956680301 0.42532540417601996609 B12: -0.68819096023558676910 -0.26286555605956680301 0.42532540417601996609 B13: -0.68819096023558676910 0.26286555605956680301 -0.42532540417601996609 B14: -0.68819096023558676910 -0.26286555605956680301 -0.42532540417601996609 B15: 0.42532540417601996609 0.68819096023558676910 0.26286555605956680301 B16: 0.42532540417601996609 0.68819096023558676910 -0.26286555605956680301 B17: -0.42532540417601996609 0.68819096023558676910 0.26286555605956680301 B18: -0.42532540417601996609 0.68819096023558676910 -0.26286555605956680301 B19: 0.42532540417601996609 -0.68819096023558676910 0.26286555605956680301 B20: 0.42532540417601996609 -0.68819096023558676910 -0.26286555605956680301 B21: -0.42532540417601996609 -0.68819096023558676910 0.26286555605956680301 B22: -0.42532540417601996609 -0.68819096023558676910 -0.26286555605956680301 B23: 0.26286555605956680301 0.42532540417601996609 0.68819096023558676910 B24: -0.26286555605956680301 0.42532540417601996609 0.68819096023558676910 B25: 0.26286555605956680301 -0.42532540417601996609 0.68819096023558676910 B26: -0.26286555605956680301 -0.42532540417601996609 0.68819096023558676910 B27: 0.26286555605956680301 0.42532540417601996609 -0.68819096023558676910 B28: -0.26286555605956680301 0.42532540417601996609 -0.68819096023558676910 B29: 0.26286555605956680301 -0.42532540417601996609 -0.68819096023558676910 B30: -0.26286555605956680301 -0.42532540417601996609 -0.68819096023558676910 Face Cycles Covering Faces A01 B18 A10 B07 A06 B11 A09 B16 A03 B05 A01 B06 A03 B15 A11 B13 A05 B09 A12 B17 A01 B24 A07 B01 A05 B26 A02 B15 A10 B19 A01 B20 A12 B16 A02 B30 A06 B01 A08 B28 A01 B25 A08 B09 A09 B04 A11 B07 A07 B29 A02 B21 A12 B10 A07 B14 A11 B19 A04 B06 A02 B05 A04 B20 A09 B12 A08 B08 A10 B22 A02 B27 A05 B08 A11 B03 A09 B10 A06 B23 A03 B27 A08 B02 A06 B29 A04 B18 A11 B22 A03 B21 A09 B17 A04 B25 A05 B02 A07 B23 A03 B30 A07 B11 A12 B04 A10 B13 A08 B26 A04 B24 A06 B14 A10 B03 A12 B12 A05 B28 Central Faces A01 B05 A04 B06 A01 B17 A04 B20 A01 B18 A04 B19 A01 B24 A04 B29 A01 B25 A04 B28 A02 B05 A03 B06 A02 B15 A03 B22 A02 B16 A03 B21 A02 B23 A03 B30 A02 B26 A03 B27 A05 B01 A08 B02 A05 B08 A08 B13 A05 B09 A08 B12 A05 B25 A08 B28 A05 B26 A08 B27 A06 B01 A07 B02 A06 B07 A07 B14 A06 B10 A07 B11 A06 B23 A07 B30 A06 B24 A07 B29 A09 B03 A12 B04 A09 B09 A12 B12 A09 B10 A12 B11 A09 B16 A12 B21 A09 B17 A12 B20 A10 B03 A11 B04 A10 B07 A11 B14 A10 B08 A11 B13 A10 B15 A11 B22 A10 B18 A11 B19 Face Geometry Edge length (for unit outer radius) sqrt( (15 + sqrt(5)) / 10 ), approx. 1.312862063490 Covering face angles arccos( (31 - 5 sqrt(5)) / 44 ), approx. 63.227644881607 degrees arccos( ( 4 - sqrt(5)) / 11 ), approx. 80.772355118393 degrees Central face angles arccos( ( 4 - sqrt(5)) / 11 ), approx. 80.772355118393 degrees arccos( (-4 + sqrt(5)) / 11 ), approx. 99.227644881607 degrees Dihedral angle arccos( (5 + sqrt(5)) / 10 ), approx. 43.646927108796 degrees